Mammalian electrophysiology on a microfluidic platform.
نویسندگان
چکیده
The recent development of automated patch clamp technology has increased the throughput of electrophysiology but at the expense of visual access to the cells being studied. To improve visualization and the control of cell position, we have developed a simple alternative patch clamp technique based on microfluidic junctions between a main chamber and lateral recording capillaries, all fabricated by micromolding of polydimethylsiloxane (PDMS). PDMS substrates eliminate the need for vibration isolation and allow direct cell visualization and manipulation using standard microscopy. Microfluidic integration allows recording capillaries to be arrayed 20 microm apart, for a total chamber volume of <0.5 nl. The geometry of the recording capillaries permits high-quality, stable, whole-cell seals despite the hydrophobicity of the PDMS surface. Using this device, we are able to demonstrate reliable whole-cell recording of mammalian cells on an inexpensive microfluidic platform. Recordings of activation of the voltage-sensitive potassium channel Kv2.1 in mammalian cells compare well with traditional pipette recordings. The results make possible the integration of whole-cell electrophysiology with easily manufactured microfluidic lab-on-a-chip devices.
منابع مشابه
Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow
A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...
متن کاملA microfluidic platform for complete mammalian cell culture.
We introduce the first lab-on-a-chip platform for complete mammalian cell culture. The new method is powered by digital microfluidics (DMF), a technique in which nanolitre-sized droplets are manipulated on an open surface of an array of electrodes. This is the first application of DMF to adherent cell culture and analysis, and more importantly, represents the first microfluidic platform capable...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملA Novel Long-term, Multi-Channel and Non-invasive Electrophysiology Platform for Zebrafish
Zebrafish are a popular vertebrate model for human neurological disorders and drug discovery. Although fecundity, breeding convenience, genetic homology and optical transparency have been key advantages, laborious and invasive procedures are required for electrophysiological studies. Using an electrode-integrated microfluidic system, here we demonstrate a novel multichannel electrophysiology un...
متن کاملHigh-density microfluidic arrays for cell cytotoxicity analysis.
In this paper, we report on the development of a multilayer elastomeric microfluidic array platform for the high-throughput cell cytotoxicity screening of mammalian cell lines. Microfluidic channels in the platform for cell seeding are orthogonal to channels for toxin exposure, and within each channel intersection is a circular chamber with cell-trapping sieves. Integrated, pneumatically-actuat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 26 شماره
صفحات -
تاریخ انتشار 2005